A Gaussian Mixture Model Clustering Ensemble Regressor for Semiconductor Manufacturing Final Test Yield Prediction
نویسندگان
چکیده
منابع مشابه
Weighted Ensemble Clustering for Increasing the Accuracy of the Final Clustering
Clustering algorithms are highly dependent on different factors such as the number of clusters, the specific clustering algorithm, and the used distance measure. Inspired from ensemble classification, one approach to reduce the effect of these factors on the final clustering is ensemble clustering. Since weighting the base classifiers has been a successful idea in ensemble classification, in th...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملIMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملMultivariate Data Clustering for the Gaussian Mixture Model
This paper discusses a soft sample clustering problem for multivariate independent random data satisfying the mixture model of the Gaussian distribution. The theory recommends to estimate the parameters of model by the maximum likelihood method and to use “plug-in” approach for data clustering. Unfortunately, the calculation problem of the maximum likelihood estimate is not completely solved in...
متن کاملA Novel Evolutionary Clustering Algorithm Based on Gaussian Mixture Model
Estimating the optimal number of clusters for a dataset is one of the most essential issues in cluster analysis. Traditional clustering algorithms usually predefine the number of clusters via random selection or contend based knowledge. An improper pre-selection for the number of clusters may easily lead to bad clustering outcome. In order to address this issue we propose in this paper a new ev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2021
ISSN: 2169-3536
DOI: 10.1109/access.2021.3055433